Program outcomes, program specific outcomes and course outcomes for all programs offered by the institution

i) Name of the Department: Civil Engineering

Programs Outcomes: Engineering Graduates will have

- PO1: An ability to apply knowledge of mathematics, science and engineering.
- PO2:An ability to design and conduct field and laboratory experiments
- PO3:An ability to design a system to meet desired needs within realistic constraints such as economic, environmental, social, safety and sustainability.
- PO4: An ability to function effectively on interdisciplinary and multidisciplinary teams to accomplish a common goal.
- PO5: An ability to identify formulate and solve civil engineering problems
- PO6: An understanding of professional and ethical responsibility while discharging civil engineering related works
- PO7: An ability to convey technical material through oral presentations and written papers and reports
- PO8: Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
- PO9: An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- PO10: knowledge of contemporary issues and environmental impact in civil engineering practice.
- PO11: Understanding the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- PO12: An ability interpret data in two or more of the following areas: structural engineering, geotechnical engineering, hydraulics, construction materials and environmental engineering
- PSO1: An ability to propose sustainable solutions by applying technical know-how and managerial skills in Planning, design and execution of civil infrastructure
- PSO2: An ability to perform exceedingly well in academics to pursue higher studies and succeed in civil engineering services examinations.

Course Outcomes:

Year	Name of the Course (Subject)	Course Outcomes	
	1Building Technology and Architectural Planning	 CO1: Identify types of building and basic requirements of building components CO2: Make use of Architectural Principles and Building byelaws for building construction. CO3: Make use of Principles of Planning in Town Planning, Different Villages and Safety aspects. CO4: Plan effectively various types of Residential Building forms according to their utility, 	
	2Mechanics of structure	 functions with reference to National Building Code. CO1: Understand concept of stress-strain and determine different types of stress, strain in determinate, indeterminate homogeneous and composite structures CO2 Calculate shear force and bending moment in determinate beams for different loading conditions and illustrate shear force and bending moment diagram. CO3 Use theory of torsion to determine the stresses in circular shaft and understand concept of Principal stresses and strains CO4 Analyze axially loaded and eccentrically loaded column. 	
Second	3 Fluid Mechanics	CO1: Understand the use of Fluid Properties, concept of Fluid statics, basic equation of Hydrostatics, measurement of fluid pressure, buoyancy & floatation and its application for solving practical problems. CO2 Understand the concept of fluid kinematics with reference to Continuity equation and fluid dynamics with reference to Modified Bernoulli's equation and its application to practical problems of fluid flow CO3 Understand the concept of Dimensional analysis using Buckingham's π theorem, Similarity & Model Laws and boundary layer theory and apply it for solving practical problems of fluid flow. CO4Understand the concept of laminar and turbulent flow and flow through pipes and its .	
Year SEM I	4 Engineering Mathematics III	 CO1:Solve Higher order linear differential equations and its applications to modelling and analyzing Civil engineering problems such as bending of beams, whirling of shafts and massspring systems. CO2. Solve System of linear equations using direct & iterative numerical techniques and developsolutions for ordinary differential equations using single step & multistep methods applied tohydraulics, geotechnics and structural systems. CO3Apply Statistical methods like correlation, regression and probability theory in data analysisand predictions in civil engineering CO4Perform Vector differentiation & integration, analyze the vector fields and apply to fluid flowproblems CO5 Solve Partial differential equations such as wave equation, one- and two-dimensional 	
	5Engineering Geology	 heat flow equations CO1: Explain about the basic concepts of engineering geology, various rocks, and minerals both in lab and on the fields and their inherent characteristics and their uses in civil engineering constructions. CO2 Exploring the importance of mass wasting processes and various tectonic processes that hampers the design of civil engineering projects and its implications on environment and sustainability. CO3 Recognize effect of plate tectonics, structural geology and their significance and utility in civil engineering activities CO4 Incorporate the various methods of survey, to evaluate and interpret geological nature of the rocks present at the foundations of the dams, percolation tanks, tunnels and to infer site / alignment/ level free from geological defects 	
Second Year Sem II	1Geotechnical Engineering	CO1: Differentiate the different types of soil and their engineering properties and classify them CO2 Determine the soil properties in laboratory and develop a proficiency in handling experimental data. CO3 Understand of the concept of effective stress and its influence on soil behavior CO4 Develop an understanding of the influence of water flow on the engineering behavior of soils.	
	2 Survey	CO1: Define and Explain basics of plane surveying and differentiate the instruments used for it. CO2 Express proficiency in handling surveying equipment and analyze the surveying data from these equipment.	

		CO3 Describe different methods of surveying and find relative positions of points on the
		surface of earth. CO4 Execute curve setting for civil engineering projects such as roads, railways etc CO5 Articulate advancements in surveying such as space based positioning systems CO6 Differentiate map and aerial photographs, also interpret aerial photographs.
	3 Concrete	CO1: students will be familiar with properties of different ingredients of concrete CO2 students will be familiar with different admixtures
	Technology	CO3students will be familiar with properties of fresh and hardened concrete CO4 students will be able to prepare concrete mix design
		CO1: Understand the basic concept of static and kinematic indeterminacy and analysis of indeterminate beams.
	4 Structural	CO2Analyze redundant trusses and able to perform approximate analysis of multi-story multi-bay frames.
	Analysis	CO3Implement application of the slope deflection method to beams and portal frames CO4 Analyze beams and portal frames using moment distribution method.
		CO5Determine response of beams and portal frames using structure approach of stiffness matrix method.
		CO6Apply the concepts of plastic analysis in the analysis of steel structures CO1: Describe project life cycle and the domains of Project Management
		CO2 Explain networking methods and their applications in planning and management CO3Categorize the materials as per their annual usage and also Calculate production rate
	5 Project management	of construction equipment CO4Demonstrates resource allocation techniques and apply it for manpower planning. CO5Understand economical terms and different laws associated with project
		management CO6 Apply the methods of project selection and recommend the best economical project.
		CO1: Various components of hydrologic cycle that affect the movement of water in the earth
	1 Hydrology and water resource	CO2 Various Stream flow measurements technique CO3 The concepts of movement of ground water beneath the earth
	engineering.	CO4 The requirements of irrigation & various irrigation techniques, requirements of the crops
		CO5 Apply math, science, and technology in the field of water resource CO1: Meaning and scope of Infrastructure Engineering
	2 hafes at most mar	CO2 Railways and there component
	2 Infrastructure Engineering and	CO3 New Construction Techniques their purpose and construction method CO4 Types of tunnel Criteria for selection of size & amp; shape of tunnels. Ventilation in
	Construction	tunneling-temporary and permanent, Micro
	Techniques	CO5 Tunneling and trenchless tunneling. CO6 Construction Equipments Economic maintenance & amp; repair of construction
		equipment. CO1:Understanding of the design philosophies and behavior of structural steel CO2Ability to analyze and design of tension /Compression members
Third Year	3 Structural	CO3Ability to analyze and design of columns
Sem I	Design-l	CO4Ability to analyze and design of beams
		CO5 Ability to analyze and design of beam-columns CO6Ability to analyze and design of simple bolted and welded connections
		CO7Ability to design steel framing system and connections of a building .
		CO1: Calculate static and kinematic degree of indeterminacy of structure
		CO2Analyze the statically indeterminate beams and pin jointed trusses by any of the appropriate force methods
		CO3Analyze the kinematically indeterminate beams and pin jointed trusses by any of the
	4 Structural	appropriate displacement methods
	Analysis-II	CO4 Analyze the 2-D rigid jointed rectangular portal frame by any of the relevant force methods and relevant displacement methods
		CO5 Calculate the deflection of the beam by using any of the available methods.
		CO6 Understand the concepts involved in finite analysis methods to idealize any structure
		for the purpose of design.
	E Eluid	CO1: Water conveyance : The piping system which delivers this employs various fluid
	5 Fluid Mechanics II	dynamics principles for conveyance, filtration, purification, pumping, lifting etc CO2Irrigation and farming : Indira Gandhi canal which is one of the biggest canal projects which helped the Green Revolution. The hydraulics applied to the design are pretty

	T	
		intricate. Canals like these have powered the agricultural sector in ways one cannot
		fathom
		CO3 Heating and ventilation: The comfort of sitting inside a temperature regulated room
		(especially during summer) equates to mental peace. The labyrinth network of pipes and
		ducts are designed using simulations and applied fluid mechanics.
		CO4 Food Processing Industry: The mixing and agitation of a wide range of liquids is
		simulated before implementation and prototyping. This ensures the right amount of
		material is used and quality can be ensured.
		CO1: Apply the knowledge of geometric principles to arrive at surveying problems
		CO2 The knowledge of limits of accuracy will be obtained by making measurements with
	1 Advanced	various surveying equipment employed in practice
		CO3 Use modern instruments to obtain geo-spatial data and analyze the same to
	Surveying	appropriate engineering problems
		CO4Capture geodetic data to process and perform analysis for survey problems with the
		use of electronic instruments
		CO1: Describe project life cycle and the domains of Project Management.
		CO2 Explain networking methods and their applications in planning and management
	2 Project	CO3 Categorize the materials as per their annual usage and also Calculate production rate
	-	
	Management	of Construction equipment
	and Engineering	CO4 Demonstrates resource allocation techniques and apply it for manpower planning
Third Year	Economics	CO5 Understand economical terms and different laws associated with project
Sem II		management
		CO6 Apply the methods of project selection and recommend the best economical project
		CO1: Subsurface Investigations for Foundations Purpose and planning of subsurface
		exploration. Methods of Investigation
		CO2 Bearing capacity and Shallow Foundation
		CO3Settlement: - Introduction, Causes of settlement, Consolidation settlement spring
	3 Foundation	analogy, Terzaghi's consolidation theory
	Engineering	CO4Deep FoundationsIntroduction, Pile classification, Pile installation-Cast in situ, driven
		and bored pile
		CO5Cofferdams and Foundation on Black Cotton Soils
		CO6Soil Reinforcement and Earthquake Geodetics.
	4 Structural	CO1: Analyze and design reinforced concrete flexural members
	Design-II	CO2 Analyze and design reinforced concrete compression members
		CO3 Analyze and design shear reinforcement.
		CO1: Be able to identify and value the effect of the pollutants on the environment:
		atmosphere, water and soil
		CO2 Understand about water supply system
		CO3 Understand about water treatment and various methods of treatment
	5 Environmental	CO4 Be able to analyze an industrial activity and identify the environmental problems
	Engineering-I	CO5 Be able to plan strategies to control, reduce and monitor pollution.
		CO6 Be able to select the most appropriate technique to purify and/or control the
		emission of pollutants.
		CO7 Be able to apply the basis of an Environmental Management System (EMS) to an
		industrial activity
		CO1: To increase the interest of student in active learning
		-
		CO2 To increase the presentation skill as well as stage daring of students.
	6 Seminar	CO3 To elaborate the theoretical knowledge of civil in to actual construction
		CO4 To increase research knowledge about civil engineering work.
		CO5 To develop communication skill, group discussion etc. of student.
		CO1: The students would estimate sewage generation, understand the characteristics and
		composition of sewage.
		CO2 The students would design sewer system including sewage pumping stations.
		CO3 The students would perform the basic design of the unit operations and processes
	1 Environmental	that are used in primary treatment of sewage treatment.
		that are used in primary treatment of sewage treatment. CO4 The students would perform the basic design of the unit operations and processes
Final Year	1 Environmental Engineering II	CO4 The students would perform the basic design of the unit operations and processes
Final Year Sem I		CO4 The students would perform the basic design of the unit operations and processes that are used in secondary treatment of sewage treatment.
		CO4 The students would perform the basic design of the unit operations and processes that are used in secondary treatment of sewage treatment. CO5 The students would understand self-purification of streams. The students would
		CO4 The students would perform the basic design of the unit operations and processes that are used in secondary treatment of sewage treatment. CO5 The students would understand self-purification of streams. The students would design disposal methods for treated sewage and would estimate sludge generation and
		CO4 The students would perform the basic design of the unit operations and processes that are used in secondary treatment of sewage treatment. CO5 The students would understand self-purification of streams. The students would design disposal methods for treated sewage and would estimate sludge generation and understand management of sludge.
	Engineering II	 CO4 The students would perform the basic design of the unit operations and processes that are used in secondary treatment of sewage treatment. CO5 The students would understand self-purification of streams. The students would design disposal methods for treated sewage and would estimate sludge generation and understand management of sludge. CO1:Understand basic concept of Highway engineering
		CO4 The students would perform the basic design of the unit operations and processes that are used in secondary treatment of sewage treatment. CO5 The students would understand self-purification of streams. The students would design disposal methods for treated sewage and would estimate sludge generation and understand management of sludge.

		CO4 To understand types of pavements and material requirement for highway
		construction
		CO5 To understand maintenance procedure for different type of pavement
		CO6 To understand the traffic engineering and different types of traffic control device
		CO7 To understand basic idea about the bridge engineering and component parts of a
		bridge
		CO1:We studied Prestressed concrete structures- Introduction- Basic concepts,-materials-
		various Pretensioning and post tensioning systems,-concept of Losses.
		CO2Design of one way and two way post tensioned slabs (Single panel only) Earthquake
	3 Structural	loads by seismic coefficient method- Estimation of combined effect of Lateral and vertical
	Design and	loading in multi storeyed frames.
	Drawing III	CO3Design of an intermediate continuous beam within the above structure. Design of
		Water tanks- circular and rectangular with flexible and rigid base- resting on ground by
		approximate and IS code method.
		CO4Design of Cantilever retaining wall- Tee and L shapes.
		CO1: Students are able to decide the use of supplement cement in concrete, use of
		different admixture and its application as per requirement
		CO2 Students are capable to understand the special concrete, its properties and
	4 Advanced	application as per requirement.
	Concrete	CO3 Students are able to do concrete mix design for required strength of concrete with
	Technology	different approach
		CO4 Students are able to know details of ready mix concrete plant.
		CO5 Students are able to understand the durability of concrete, assessment and
		inspection of hardened concrete
		CO1:To understand the concept of quality
		CO2To have exposure to challenges in quality improvement programs
		CO3Identify requirement of quality improvement programs
	5 TQM & MIS in	CO4To implement quality improvement program
	Civil Engineering	CO5 To implement quality improvement program
		CO6 To understand multiple online systems, analyzes the information, and reports data to
		aid in management decision-making.
		CO1:Understand the design aspects of various hydraulic structures on permeable
		foundation and their causes of failure.
		CO2. Plan and design the efficient silt control structures and relevant river training works.
	1 Dams and Hydraulic Structures	CO3Plan and design suitable transition structures for subcritical and supercritical flow
		conditions using standard available methods.
		CO4 Plan and design of canal regulation works
		CO5 Understand the commonly used methods of e peak floods estimation required for
		the design of various components of water resources projects.
		CO6. Understand the concepts of the flood routing and make assessment of maximum
		reservoir level leading to proper estimation of free board and height of flood protection.
		CO1:Estimate of quantities for a Residential Building & Abstract cost Estimate
	2 Quantity	CO2Design and Prepare Bar bending schedule for reinforcement works.
	Surveying,	CO3Estimate the calculation of earth work quantity for roads and canals.
	Contracts and	CO4Analyse the rates of work quantities and labour.
	tenders	CO5 Analyse different types of contracts, tender document for building & valuation
Final Year		
Sem II		CO1: Able to explain need and advantages of water energy over the other different
		energy sources, basis of hydrological analysis, classification of energy resources,
		hydropower development and potential of India.
		CO2 Able to classify hydropower plant on various basis, Micro hydro scheme, describe
		different components in hydropower plant
		CO3 Able to analyze electrical load on turbines, different factors in power load
	2 Hydronower	assessment, load duration curve, prediction of load.
	3 Hydropower Engineering	CO4 Able to explain types of power house, layouts of power house, different power plant
		equipments, instrumentation and control in power house.
		CO5Able to classify and select turbines, governing of turbines, water hammer
		phenomenon, surge tanks and draft tube, cavitations in turbines, analyze impulse and
		reaction turbines.
		CO6 Able to explain pricing of electricity, list various policies of electricity act-2003,
		recognize importance of carbon credit in power generation, private participation and
		investment policies in power sector.
	4 Construction	CO1: Apply knowledge, techniques, skills, and tools of the construction industry in

Ma	Management construction activities.	
		CO2 Function effectively as members or leaders on construction teams;
		CO3 Communicate effectively regarding subjects related to construction activities
		CO4Demonstrate an understanding of professional and ethical responsibilities and
		commitment to quality, timeliness, and continuous improvement.
		CO5create a construction project safety plan and project schedules
		CO6create construction project cost estimates.
		CO7Analyse construction documents for planning and management of construction
		processes and methods, materials, and equipment used to construct projects.
		CO8apply construction management skills as a member of a multi- disciplinary team
		CO1: Ability to engage in independent study to research literature in the identified
		domain
		CO2 Ability to consolidate the literature search to identify and formulate the engineering
		problem
		CO3 Ability to identify the community that shall benefit through the solution to the
		identified engineering problem and also demonstrate concern for environment
5 p	5 project	CO4 Ability to engage in independent study to identify the mathematical concepts,
		science concepts, engineering concepts and management principles necessary to solve
		the identified engineering problem
		CO5 Ability to select the engineering tools/components for solving the identified
		engineering problem
		CO6 Ability to analyse and interpret results of experiments conducted on the designed
		solution(s) to arrive at valid conclusions

ii) Name of the Department: Electronics and Telecommunication Engineering

Program Educational Objectives:

- 1. PEO1: To prepare students with strong foundation in mathematical, scientific and engineering fundamentals to excel in their career.
- 2. PEO2: To prepare students for technological changes through domain knowledge and extend their skills across the range of disciplines.
- 3. PEO3: To prepare students for continuous professional and social development through soft skills and self-learning abilities.
- 4. PEO4:To prepare students having research aptitude and an approach to problem solving.
- 5. PEO5:To prepare students for life-long learning.

Programs Outcomes:

- PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2:Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3:Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4:Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5:Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6:The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7:Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8:Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9:Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10:Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11:Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- P012:Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- PSO1:Apply concepts and knowledge of mathematics, basic electronics engineering to various areas like Signal processing, Embedded Systems, VLSI, Communication engineering etc.
- PSO2:Design and analyze Electronic Engineering problem with given specification
- PSO3:Implement Electronic and Communication system using appropriate hardware and software tools, keeping in mind, its societal and environmental effect.

Course Outcomes: (Sem I)

Second Year Engineering Mathematics III Engineering Mathematics IIII Engineering Mathematics IIII Engineering Mathematics IIII Engineering Mathematics IIII Engineering Mathematics IIIIII Engineering Mathematics IIIIIIII Engineering Mathematics IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Year	Name of the Course (Subject)	Course Outcomes
CO1: Assimilate the physics, characteristics and parameters of MOSFET towards its application as amplifier.CO2: Design MOSFET amplifiers, with and without feedback, & MOSFET oscillators, for given specifications.CO3: Analyze and assess the performance of linear and switching regulators, with their variants, towards applications in regulated power supplies.Electronic CircuitCO4: Explain internal schematic of Op-Amp and define its performance parameters.CO5: Design, Build and test Op-amp based analog signal processing and conditioning circuits towards various real time applications.CO6: Understand and compare the principles of various data conversion techniques and PLL with their	Year	Engineering Mathematics III	 equation using appropriate techniques for modelling, analyzing of electrical circuits and control system. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform vector differentiation & integration, analyze the vector fields and apply to electro- magnetic fields & wave theory. CO5: Analyze Complex functions, Conformal mappings, Contour integration applicable to electrostatics, digital
Digital Circuits CO1: Identify and prevent various hazards and	Second Year		 CO1: Assimilate the physics, characteristics and parameters of MOSFET towards its application as amplifier. CO2: Design MOSFET amplifiers, with and without feedback, & MOSFET oscillators, for given specifications. CO3 : Analyze and assess the performance of linear and switching regulators, with their variants, towards applications in regulated power supplies. CO4: Explain internal schematic of Op-Amp and define its performance parameters. CO5: Design, Build and test Op-amp based analog signal processing and conditioning circuits towards various real time applications. CO6: Understand and compare the principles of various data conversion techniques and PLL with their applications.

	1	
		timing problems in a digital design.
		CO2: Use the basic logic gates and various
		reduction techniques of digital logic circuit.
		CO3: Analyze, design and implement
		combinational logic circuits.
		CO4: Analyze, design and implement
		sequential circuits. CO5: Differentiate between
		Mealy and Moore machines. CO6: Analyze
		digital system design using PLD.
		CO1: Analyze the simple DC and AC circuit with
		circuit simplification techniques.
		CO2: Formulate and analyze driven and source
		free RL and RC circuits.
		CO3: Formulate & determine network
		parameters for given network and analyze the
		given network using Laplace Transform to find
		the network transfer function.
	Electrical Circuits	CO4: Explain construction, working and
		applications of DC Machines / Single Phase &
		Three Phase AC Motors.
		CO5: Explain construction, working and
		applications of special purpose motors &
		understand motors used in electrical vehicles.
		CO6: Analyze and select a suitable motor for
		different applications.
		CO1: Solve mathematical problems using C
		programming language.
		CO2: Implement sorting and searching
		algorithms and calculate their complexity.
		CO3: Develop applications of stack and queue
		using array .
	Data structures	CO4: Demonstrate applicability of Linked List.
		CO 5: Demonstrate applicability of nonlinear
		data structures - Binary Tree with respect to its
		time complexity.
		CO 6: Apply the knowledge of graph for solving
		the problems of spanning tree and shortest
		path algorithm.
		CO1: Understand working of waveform coding
		techniques and analyse their performance.
		CO2 : Analyze the performance of a baseband
		and pass band digital communication system in
		terms of error rate and spectral efficiency.
		CO3: Perform the time and frequency domain
	Digital Communication	analysis of the signals in a digital
		communication system.
		Co4: Design of digital communication system.
		CO5: Understand working of spread spectrum
		communication system and analyze its
Third Year		performance.
		CO1: Analyze the discrete time signals and
		system using different transform domain
	Digital Signal processing	techniques.
		CO2:Design and implement LTI filters for
		filtering different real world signals.
		CO3: Develop different signal processing
		applications using DSP processor.
		CO1: Understand the basic mathematical
	Electromagnetics	concepts related to electromagnetic vector
		fields.
		CO2:Apply the principles of electrostatics to

		the solutions of problems relating to electric field and electric potential, boundary conditions and electric energy density. CO3: Apply the principles of magnetostatics to the solutions of problems relating to magnetic field and magnetic potential, boundary conditions and magnetic energy density. CO4: Understand the concepts related to Faraday's law, induced emf and Maxwell's equations. Co5 : Apply Maxwell's equations to solutions of problems relating to transmission lines and uniform plane wave propagation.
	Microcontrollers	CO1: Learn importance of microcontroller in designing embedded application. CO2: Learn use of hardware and software tools. CO3:Develop interfacing to real world devices.
	Mechatronics	CO1: Identification of key elements of mechatronics system and its representation in terms of block diagram CO2:Understanding basic principal of Sensors and Transducer. CO3:Able to prepare case study of the system given.
	VLSI Design & Technology	 Co1: Write effective HDL coding for digital design. CO2: Apply knowledge of real time issues in digital design. CO3:Model digital circuit with HDL, simulate, synthesis and prototype in PLDs. CO4: Design CMOS circuits for specified applications. CO5: Analyze various issues and constraints in design of an ASIC Co6Apply knowledge of testability in design and build self test circuit.
Final Year	Computer Networks & Security	Co1: Understand fundamental underlying principles of computer networking Co2: Describe and analyze the hardware, software, components of a network and theirinterrelations. Co3: Analyze the requirements for a given organizational structure and select the most appropriatenetworking architecture and technologies CO4: Have a basic knowledge of installing and configuring networking applications. CO5: Specify and identify deficiencies in existing protocols, and then go onto select new and betterprotocols. Co6: Have a basic knowledge of the use of cryptography and network security.
	Radiation & Microwave Techniques	 CO1: Differentiate various performance parameters of radiating elements. CO2: Analyze various radiating elements and arrays. CO3: Apply the knowledge of waveguide fundamentals in design of transmission lines.

	Co4 :Design and set up a system consisting of various passive microwave components. C05: Analyze tube based and solid state active devices along with their applications. CO6:Measure various performance parameters of microwave components.
Internet of Things (Elective I)	CO1: On completion of the course, student will be able to CO2: Understand the various concepts, terminologies and architecture of IoT systems. CO3: Use sensors and actuators for design of IoT. CO4: Understand and apply various protocols for design of IoT systems CO5: Use various techniques of data storage and analytics in IoT CO6: Understand various applications of IoT
Electronics Product Design (Elective II)	Co1: Understand various stages of hardware, software and PCBdesign. CO2: Importance of product test &testspecifications. Co3: Special design considerations and importance ofdocumentation.

SEM-II

Year	Name of the Course (Subject)	Course Outcomes
Year Second Year	Name of the Course (Subject)	Course OutcomesCO1: Identify, classify basic signals and perform operations on signals.CO2: Identify, Classify the systems based on their properties in terms of input output relation and in
	Control Systems	CO1: Determine and use models of

Principles of Communication Systems C02: Determine the (absolute) stability of a closed loop control systems. CD3: Determine the (absolute) stability of a closed loop control systems. CD3: Determine the (absolute) stability of a closed loop control systems required for stability analysis. CD4: Determine the (absolute) stability of a closed loop control systems required for stability analysis. CD3: Determine the (absolute) stability analysis. CD5: Apply root-locus, Frequency Plots technique to analyze control systems. CD 6: Express and solve system equations in state variable form. CD7: Differentiate between various digital controllers and understand the role of the control modulation schemes under study. Principles of Communication Systems C02: Explain generation and detection of FM systems and compare with AM systems. CD5: Characterise the quantization process and cloborate digital transmission and reception of Amplitude C03: Explain generation and detection of FM systems and compare with AM systems.<		
Principles of Communication Systems C02: Describe and analysis of a dosed loop control system. C03: Perform time domain analysis of control systems required for stability analysis. C04: Perform frequency domain analysis of control systems required for stability analysis. C04: Perform trequency domain analysis of control systems required for stability analysis. C05: Apply root-locus, Frequency Plots technique to analyze control systems. C05: Differentiate between various digital controllers and understand the role of the controllers in analysis on advecting time and frequency domain spectra of signal required for advalued on analyze the technique of perientation, transmission and rec explore and analyze the technique of perientation, transmission and rec explore of Amplitude Modulation Systems. Principles of Communication Systems C04: Exhibit the importance of sampling Theorem and correlate with Pulse Modulation systems. C05: Characterize the quantization of FM systems and compare with AM systems. C04: Exhibit the importance of sampling Theorem and correlate with Pulse Modulation systems. C06: Illustrate waveform coding, multiplesing and synchronization process and eleborate digital representation techniques (FCM, DPCM, DPCM, DM and ADM). C06: Illustrate waveform coding, multiplesing and synchronization process and eleborate digital transmission. C01: Describe the principles of object oriented programming.		
Principles of Communication Systems CO2: Determine the (absolute) stability of a closed -loop control system. CO3: Perform time domain analysis of control systems required for stability analysis. CO3: Perform frequency domain analysis of control systems required for stability analysis. CO 5: Apply root-locus, Frequency Hots technique to analyze control systems. CO 6: Express and solve system equations in state variable form. CO7: Differentiate between various digital controllers and understand the role of the controllers in industrial automation. CO7: Differentiate between various digital required for stability and form. CO7: Differentiate between various digital required for modulation schemes under study. CO2: Describe and analyze the techniques of generation, transmission and receiption of Amplitude Modulation Systems. CO2: Describe and analyze the techniques of generation, transmission and receiption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO3: Explain generation and detection of FM systems and correlate with PULee Modulation technique (PCM, DPCM,		
Principles of Communication Systems CO3: Perform time domain analysis of control systems required for stability analysis. CO3: Perform frequency domain analysis of control systems required for stability analysis. CO3: Apply root-locus, Frequency Plots technique to analyze control systems required for stability analysis. CO5: Apply root-locus, Frequency Plots technique to analyze control systems required for stability analysis. CO6: Perform frequency Plots technique to analyze control systems. CO7: Differentiate between various digital controllers and understand the role of the controllers in industrial automation. CO7: Differentiate between various digital to controllers in undustrial automation. CO7: Differentiate between various digital to controllers in undustrial automation. CO7: Differentiate between various digital to controllers in undustrial automation. CO7: Differentiate between various digital to controllers in undustrial automation. CO7: Differentiate between various digital to controllers in undustrial automation. CO7: Differentiate between various digital to controllers in undustrial automation. CO7: Differentiate between various digital to controllers with Pluke Modulation systems. CO3: Copilan generation and detection of FM systems and compare with AM systems. CO3: Coarcetrize the quantization process and elaborate digital transmission and detection of PM systems and compare system (PCM, DPCM, DPM). DM and ADM). CO6: Illustrate waveform coding, multiplesing and synchronization techniques (PCM, DPCM, DPCM). DM and ADM). CO1: Describe the principles of object oriented programming.<		design of control systems.
Principles of Communication Systems C03: Perform time domain analysis of control systems required for stability analysis. C02: Perform frequency domain analysis of control systems required for stability analysis. C03: Apply root-locus, Frequency Plots technique to analyze control systems. C03: Describe and analysis of control systems required for stability analysis. C03: Apply root-locus, Frequency Plots technique to analyze control systems. C04: Express and solve system equations in state variable form. C07: Differentiate between various digital controllers and understand the role of the control systems required for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude programmission and rec eption of Amplitude programs. C03: Explain generation and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sam		CO2: Determine the (absolute) stability of
Principles of Communication Systems CO2: Describe and analyze the techniques or display for stability analysis. CO 5: Apply root-locus, Frequency Omain analysis CO 5: Apply root-locus, Frequency Plots technique to analyze control systems. CO 6: Express and solve system equations in state variable form. CO 7: Differentiate between various digital controllers and understand the role of the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO 2: Describe and analyze the techniques of generation, transmission power exploit for studies systems. CO 2: Describe and analyze the techniques of generation, transmission power study. CO 2: Describe and analyze the techniques of generation, transmission power study. CO 3: Explain generation and detection of FM systems and compare with AM systems. CO 4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation Systems. CO 5: Characterize the quantization process and elaborate digital representation technique (PAM, PVM, and PPM). CO 5: Characterize the quantization process and elaborate digital representation technique solution technique		a closed -loop control system.
Principles of Communication Systems CO2: Describe and analyze the techniques or display for stability analysis. CO 5: Apply root-locus, Frequency Omain analysis CO 5: Apply root-locus, Frequency Plots technique to analyze control systems. CO 6: Express and solve system equations in state variable form. CO 7: Differentiate between various digital controllers and understand the role of the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO 2: Describe and analyze the techniques of generation, transmission power exploit for studies systems. CO 2: Describe and analyze the techniques of generation, transmission power study. CO 2: Describe and analyze the techniques of generation, transmission power study. CO 3: Explain generation and detection of FM systems and compare with AM systems. CO 4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation Systems. CO 5: Characterize the quantization process and elaborate digital representation technique (PAM, PVM, and PPM). CO 5: Characterize the quantization process and elaborate digital representation technique solution technique		
Principles of Communication Systems C04: Explore and analyzes of control systems required for stability analysis. C0 5: Apply root-locus, Frequency Plots technique to analyze control systems. C0 5: Apply root-locus, Frequency Plots technique to analyze control systems. C0 5: Differentiate between various digital controllers in industrial automation. C07: Differentiate between various digital controllers in industrial automation. C01: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation systems. C02: Describe and analyze the techniques of generation, transmission and reception of Amplitude Modulation Systems. C03: Explain generation and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation techniques (PCM, PVM, and PPM). C05: Characterize the quantization process and elaborate digital responsentation techniques (PCM, DPCM, DM and ADM). C05: Characterize the quantization process and elaborate digital transmission. C06: Illustriate waveform coding. multiplexing and synchronization techniques and activate their importance in baseband digital transmission. C01: Describe the principles of object oriented programming. C01: Describe the principles of object oriented programming.		
Principles of Communication Systems C04: Perform frequency domain analysis of control systems required for stabilit y analysis. C0 5: Apply root-locus, Frequency Plots technique to analyze control systems. C0 6: Express and solve system equations in state variable form. C0 7: Differentiate between various digital controllers and understand the role of the controllers in industrial automation. C0: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. C03: Explain generation and detection of FM systems. C03: Explain generation and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation techniques (PCM, DPCM, DVM, and PPM). C05: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DVM, and ADM). C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C01: Describe the principles of object oriented programming. C01: Describe the principles of object oriented programming.		
Principles of Communication Systems C03: Apply root-locus, Frequency Plots technique to analyze control systems. C06: Express and solve system equations in state variable form. C07: Differentiate between various digital controllers in Industrial automation. C01: To compute & compare the bandwidth and transmission power requirements by analyzing time and requerex domain spectra of signal requirements by analyzing time and requerex domain spectra of signal requirements by analyzing time and for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. C03: Explain generation and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation Exchingues (PCM, DPCM, DVM, and PPM). C05: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DVM, and ADM). C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C01: Describe the principles of object oriented Programming.		,
Principles of Communication Systems C03: Explay root-locus, Frequency Plots technique to analyze control systems. C06: Express and solve system equations in state variable form. C07: Differentiate between various digital controllers and understand the role of the controllers in Industrial automation. C01: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. C03: Explain generation and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation techniques (POM, PEVM, PWM, and PPM). C05: Characterize the quantization process and elaborate digital representation techniques (PCM, DECM, DM and ADM). C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C01: Describe the principles of object oriented Programming.		
Principles of Communication Systems CO3: Apply root-locus, Frequency Plots technique to analyze control systems. CO 6: Express and solve system equations in state variable form. CO7: Differentiate between various digital controllers and understand the role of the Controllers in Industrial automation. CO1: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO3: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO3: Describe the principles of object oriented programming.		
Principles of Communication Systems CO1: Express and solve system equations in state variable form. CO7: Differentiate between various digital controllers and understand the role of the controllers and understand the role of the controllers in industrial automation. CO1: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. Object Originted. Programming		analysis.
Principles of Communication Systems CO1: Express and solve system equations in state variable form. CO7: Differentiate between various digital controllers and understand the role of the controllers and understand the role of the controllers in industrial automation. CO1: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. Object Originted. Programming		CO 5: Apply root-locus, Frequency Plots
Principles of Communication Systems C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PCM, DPCM, DPCM		
Principles of Communication Systems C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PCM, DPCM, DPCM		
CO7: Differentiate between various digital controllers and understand the role of the controllers in Industrial automation. CO1: To compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO2: Describe and analyze the techniques of generation, transmission and reception of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented Programming.		
controllers and understand the role of the controllers in Industrial automation. C01: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. C03: Explain generation, transmission and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). C05: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C01: Describe the principles of object oriented. Programming		In state variable form.
controllers and understand the role of the controllers in Industrial automation. C01: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. C03: Explain generation, transmission and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). C05: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C01: Describe the principles of object oriented. Programming		CO7: Differentiate between various digital
Industrial automation. C01: To compute & compare the bandwidth and transmission power requirements by analying time and frequency domain spectra of signal required for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. C03: Explain generation and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). C05: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C06: Illustrate waveform coding, multiplexing and synchronization techniques of oriented. Programming		
C01: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. C02: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. C03: Explain generation and detection of FM systems and compare with AM systems. C04: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). C05: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). C06: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. C01: C02: Describe the principles of object oriented Programming		
bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. Principles of Communication Systems CO3: Explain generation and detection of FM systems and compare with AM systems. Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
Principles of Communication Systems CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques in descention techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
Principles of Communication Systems CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
CO2: Describe and analyze the techniques of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PVW, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented Programming		
of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented Programming.		study.
of generation, transmission and rec eption of Amplitude Modulation Systems. CO3: Explain generation and detection of FM systems and compare with AM systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented Programming.		CO2. Describe and analyze the techniques
Principles of Communication Systems cO3: Explain generation and detection of FM systems and compare with AM systems. Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented Programming.		
Principles of Communication Systems CO3: Explain generation and detection of FM systems and compare with AM systems. Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO6: Diject Oriented. Programming C01: Describe the principles of object oriented programming.		
Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO6: Object Oriented. Programming CO1: Describe the principles of object oriented programming.		
Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO6: Object Oriented. Programming CO1: Describe the principles of object oriented programming.		
Principles of Communication Systems systems. CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented Programming.		
Principles of Communication Systems CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO6: Direct Oriented Programming CO1: Describe the principles of object oriented programming.		, , ,
CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		Systems.
Modulation technique (PAM, PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.	Principles of Communication Systems	CO4: Exhibit the importance of Sampling
PWM, and PPM). CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
Process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		PWM, and PPM).
Process and elaborate digital representation techniques (PCM, DPCM, DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		CO5: Characterize the quantization
DM and ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
ADM). CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
Multiplexing and synchronization techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		
Object Oriented Programming techniques and articulate their importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		CO6: Illustrate waveform coding,
importance in baseband digital transmission. CO1: Describe the principles of object oriented programming.		_
transmission. CO1: Describe the principles of object oriented programming. Object Oriented Programming		
Object Oriented Programming		
Object Oriented Programming		
Object Oriented Programming		
Object Oriented Programming CO2: Apply the concepts of data		errenden biobranning.
	Object Oriented Programming	CO2: Apply the concepts of data
encapsulation, inheritance in C++.		

	1	
		CO3: Understand Operator overloading and friend functions in C++.
		CO4: Apply the concepts of classes,
		methods inheritance and polymorphism
		to write programs C++.
		CO5: Apply Templates, Namespaces and
		Exception Handling concepts to write programs in C++.
		CO6: Describe and use of File handling in C++.
		CO1: Design & implement a triggering /
		gate drive circuit for a power device 🛛
		CO2: Understand, perform & analyze different controlled converters.
	Power Electronics	PREPRET controlled converters.
		design a battery charger.
		CO4: Design & implement over voltage / over current protection circuit.
		CO1: Perform information theoretic
		analysis of communication system.
		CO2: Design a data compression scheme
		using suitable source coding technique. Co3 :Design a channel coding scheme for
	Information Theory, Coding and	a communication system.
	Communication Networks	CO4 :Understand and apply fundamental
		principles of data communication and networking.
		Co5:Apply flow and error control
		techniques in communication networks.
		CO1: Get overview of Management
		Science aspects useful in business. CO2: Get motivation for Entrepreneurship
Third Year	Business Management	CO3: Get Quality Aspects for
		Systematically Running the Business
		CO4: o Develop Project Management
		aspect and Entrepreneurship Skills. CO1: Describe the ARM microprocessor
		architectures and its feature.
		CO2: Interface the advanced peripherals
	Advanced Processors	to ARM based microcontroller CO3: Design embedded system with
		available resources.
		CO4: Use of DSP Processors and resources
		for signal processing applications.
		CO1: Demonstrate the knowledge of Systems Programming and Operating
		Systems
		CO2: Frmulate the Problem and develop the solution for same
	System Programming and Operating	CO3: Compare and analyse the different
	Systems	implementation approach of system
		programming operating system
		abstractions. Co4: Interpret various OS functions used
		in Linux / Ubuntu
Final Year	Mobile Communicatio	Co1: Apply the concepts of switching
		technique and traffic engineering to

	design multistage
	networks.
	CO2: Explore the architecture of GSM.
	CO3:Differentiate thoroughly the
	generations of mobile technologies
	Co1: Perform Link power budget and Rise
	Time Budget by proper selection of
	components and check its viability.
Broadband Communication Systems	Co2: Perform Satellite Link design for Up
	Link and Down Link.
	Co1: Understand PLC architecture
	Co2: Develop PLC ladder programs for
	simple industrial applications
	CO3: Design Automation systems for
PLC s and Automation	industrial applications
	CO4: Implement the Engineering
	Automation using PLC approach.
	Co1: Explain various concepts and
	terminologies used in WSN
	CO2:. Describe importance and use of
	radio communication and link
	management in WSN
	Co3:Explain various wireless standards
	and protocols associated with WSN
Wireless Sensor Networks	CO4: Recognize importance of localization
	and routing techniques used in WSN
	Co5: Understand techniques of data
	aggregation and importance of security in
	WSN
	CO6:.Examine the issues involved in
	design and deployment of WSN
1	

iii) Name of the Department: Mechanical Engineering

Program Educational Objectives:

- 1. PEO1: To develop students with a sound technical knowledge for a successful career in industries, government/research organizations, academia, and higher studies and to demonstrate entrepreneurship.
- 2. PEO2: To prepare students with expertise in use of modeling, analysis and programming softwares.
- 3. PEO3: To prepare students to work effectively as individual and as team member in multidisciplinary projects and demonstrate managerial and entrepreneurial skills.
- 4. PEO4:To prepare students to engage in lifelong learning, career enhancement and adopt to changing professional and societal needs.

Programs Outcomes:

- **PO1:Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2:Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **PSO1.** Design and Manufacture mechanical components and systems.
- **PSO2.** Model and Analyze machine components using Creo-Parametric, ANSYS, MasterCAM, and MATLAB.
- **PSO3.** Specify, analyze and determine the performance of thermal systems including IC engines, Refrigeration and Air Conditioning Systems, Air Compressors, Hydraulic Turbines and Pumps.

Course Outcomes: (Sem I)

Year	Name of the Course (Subject)	Course Outcomes
		CO1. DEFINE various types of stresses and strain developed on determinate and indeterminate members. CO2. DRAW Shear force and bending moment diagram for various types of transverse loading and
	Solid Mechanics	support. CO3. COMPUTE the slope & deflection, bending stresses and shear stresses on a beam. CO4. CALCULATE torsional shear stress in shaft and buckling on the column.
		COUNTIL CO5. APPLY the concept of principal stresses and theories of failure to determine stresses on a 2-D element. CO6. UTILIZE the concepts of SFD & BMD, torsion and principal stresses to solve
Second Year		combined loading application based problems.
		CO1. UNDERSTAND basic concepts of CAD system, need and scope in Product Lifecycle Management CO2. UTILIZE knowledge of curves and surfacing features and methods to create complex solid
	Solid Modeling and Drafting	geometry CO3. CONSTRUCT solid models, assemblies using various modeling techniques & PERFORM mass property analysis, including creating and using a coordinate system CO4. APPLY geometric transformations to simple
		2D geometries CO5. USE CAD model data for various CAD based engineering applications viz. production drawings, 3D printing, FEA, CFD, MBD, CAE, CAM, etc. CO6. USE PMI & MBD approach for communication

Engineering Thermodynamics	CO1. DESCRIBE the basics of thermodynamics with heat and work interactions. CO2. APPLY laws of thermodynamics to steady flow and non-flow processes. CO3. APPLY entropy, available and non available energy for an Open and Closed System, CO4. DETERMINE the properties of steam and their effect on performance of vapour power cycle. CO5. ANALYSE the fuel combustion process and products of combustion. CO6. SELECT various instrumentations required for safe and efficient operation of steam generator.
Engineering Materials and Metallurgy	CO1. COMPARE crystal structures and ASSESS different lattice parameters. CO2. CORRELATE crystal structures and imperfections in crystals with mechanical behaviour of materials. CO3. DIFFERENTIATE and DETERMINE mechanical properties using destructive and non- destructive testing of materials. CO4. IDENTIFY & ESTIMATE different parameters of the system viz., phases, variables, component, grains, grain boundary, and degree of freedom. etc. CO5. ANALYSE effect of alloying element & heat treatment on properties of ferrous & nonferrous alloy. CO6. SELECT appropriate materials for various
Electrical and Electronics Engineering	applications. CO1. APPLY programming concepts to UNDERSTAND role of Microprocessor and Microcontroller in embedded systems CO2. DEVELOP interfacing

		of different true f
		of different types of sensors and other
		sensors and other hardware devices with
		Atmega328 based Arduino Board
		CO3. UNDERSTAND the
		operation of DC motor, its speed control methods
		and braking
		CO4. DISTINGUISH
		between types of three
		phase induction motor
		and its characteristic
		features
		CO5. EXPLAIN about
		emerging technology of
		Electric Vehicle (EV) and
		its modular subsystems
		CO6. CHOOSE energy
		storage devices and
		electrical drives for EVs
		CO1. SELECT appropriate
		IS and ASME standards
		for drawing
		CO2. READ & ANALYSE
		variety of industrial
		drawings
		CO3. APPLY geometric
		and dimensional
	Geometric Dimensioning and Tolerancing Lab	tolerance, surface finish
		symbols in drawing
		CO4. EVALUATE
		dimensional tolerance
		based on type of fit, etc.
		CO5. SELECT an
		appropriate
		manufacturing process
		using DFM, DFA, etc.
		CO1.Ability to identify
		and understand failure
		modes for mechanical
		elements and design of
		machine elements
		based on strength.
		CO2.Ability to design
		Shafts, Keys and
		Coupling for industrial
		applications.
		CO3.Ability to design
Third Year	Design of Machine Elements – I	machine elements
		subjected to
		fluctuating loads.
		COA Ability to decise
		CO4.Ability to design
		Power Screws for
		Power Screws for various applications.
		Power Screws for various applications. CO5.Ability to design
		Power Screws for various applications. CO5.Ability to design fasteners and welded
		Power Screws for various applications. CO5.Ability to design fasteners and welded joints subjected to
		Power Screws for various applications. CO5.Ability to design fasteners and welded joints subjected to different loading
		Power Screws for various applications. CO5.Ability to design fasteners and welded joints subjected to different loading conditions.
		Power Screws for various applications. CO5.Ability to design fasteners and welded joints subjected to different loading

	strength and stiffness.
HEAT TRANSFER	CO 1: Analyze the various modes of heat transfer and implement the basic heat conduction equations for steady one dimensional thermal system. CO 2: Implement the general heat conduction equation to thermal systems with and without internal heat generation and transient heat conduction. CO 3: Analyze the heat transfer rate in natural and forced convection and evaluate through experimentation investigation. CO 4: Interpret heat transfer by radiation between objects with simple geometries. CO 5: Analyze the heat transfer equipment and investigate the performance.
Theory of Machine – II	CO1.Student will be able to understand fundamentals of gear theory which will be the prerequisite for gear design. CO2.Student will be able to perform force analysis of Spur, Helical, Bevel, Worm and Worm gear. CO3.The student to analyze speed and torque in epi-cyclic gear trains which will be the prerequisite for gear box design. CO4.Student will be able to design cam profile for given follower motions and understand cam Jump phenomenon, advance cam curves. CO5.The student will

		synthesize a four bar mechanism with analytical and graphical methods. CO6. <i>a</i> . The student will analyze the gyroscopic couple or effect for stabilization of Ship Aeroplane and Four wheeler vehicle. <i>b</i> . Student will choose appropriate drive for given application (stepped / step-less).
	Turbo Machines	CO1.Apply thermodynamics and kinematics principles to turbo machines. CO2.Analyze the performance of turbo machines. CO3.Ability to select turbo machine for given application. CO4.Predict performance of turbo machine using model analysis.
	Metrology And Quality Control	CO1.Understand the methods of measurement, selection of measuring instruments / standards of measurement, carryout data collection and its analysis. CO2. Explain tolerance, limits of size, fits, geometric and position tolerances and gauge design CO3.Understand and use/apply Quality Control Techniques/ Statistical Tools appropriately. CO4.Develop an ability of problem solving and decision making by identifying and analyzing the cause for variation and recommend suitable corrective actions for quality improvement.
Final Year	Hydraulics and Pneumatics	CO1.Understand working

principle of com used in hydraulio pneumatic syste CO2.Identify vari applications of h & pneumatic sys CO3.Selection of appropriate com	c &
pneumatic syste CO2.Identify vari applications of h & pneumatic sys CO3.Selection of appropriate com	
CO2.Identify vari applications of h & pneumatic sys CO3.Selection of appropriate com	
applications of h & pneumatic sys CO3.Selection of appropriate com	ious
CO3.Selection of appropriate com	
appropriate com	stems
	F
	ponents
required for hyd	raulic
and pneumatic s	systems
CO4.Analyse hyd	draulic
and pneumatic s	systems
for industrial/mo	obile
applications	
CO5.Design a sys	
according to the	
requirements	
CO6.Develop and	
knowledge to va	rious
applications	
CO1.Apply home	
transformation r	matrix for
geometrical	(
transformations	
CAD entities for	basic
geometric	
transformations.	
CO2.Use analytic synthetic curves	
surfaces in part r	
CO3.Do real time	
analysis of simpl	
mechanical elem	
beams, trusses, e	
comment on saf	
engineering com	-
using analysis so	-
CAD CAM and Automation CO4.Generate CI	
program for Turr	
Milling and gene	
path using CAM	
CO5.Demonstrat	te
understanding o	f various
rapid manufactu	iring
techniques and d	develop
competency in d	lesigning
and developing p	products
using rapid	
manufacturing	
technology.	
CO6.Understand	
robot systems ar	nd their
applications in	
manufacturing ir	ndustries.
CO1.Apply balan	-
technique for sta	
dynamic balanci	
Dynamics of Machinery multi cylinder in	line and
radial engines.	
CO2.Estimate na	
froquency for sir	-
frequency for sir undamped& dar	nnod troo

[vibratory systems
		vibratory systems. CO3.Determine response
		to forced vibrations due
		to harmonic excitation,
		base excitation and
		excitation due to
		unbalance forces.
		CO4.Estimate natural
		frequencies, mode
		shapes for 2 DOF
		undamped free
		longitudinal and torsional
		vibratory systems.
		CO5.Describe vibration
		measuring instruments
		for industrial / real life
		applications along with
		suitable method for
		vibration control.
		CO6.Explain noise, its
		measurement & noise
		reduction techniques for
		industry and day today
		life problems.
		CO1.Understand the
		different techniques used
		to solve mechanical
		engineering problems.
		CO2.Derive and use 1-D
		and 2-D element stiffness
		matrices and load vectors
		from various methods to
		solve for displacements
		and stresses.
		CO3.Apply mechanics of
		materials and machine
		design topics to provide
		preliminary results used
		for testing the
		reasonableness of finite
		element results.
		CO4.Explain the inner
		workings of a finite
	Elective – I	element code for linear
	Finite Element Analysis	stress, displacement,
		temperature and modal
		analysis.
		CO5.Use commercial
		finite element analysis
		software to solve
		complex problems in
		solid mechanics and heat
		transfer.
		CO6.Interpret the results
		of finite element analyses
		and make an assessment
		of the results in terms of
		modeling (physics
		assumptions) errors,
		discretization (mesh
		density and refinement
		toward convergence)
		toward convergence) errors, and numerical

		(round-off) errors.
		CO1.To compare and
		select the proper
		automotive system for
		the vehicle.
		CO2.To analyse the
	Elective – II	performance of the
		vehicle.
	Automobile Engineering	CO3.To diagnose the
		faults of automobile
		vehicles.
		CO4.To apply the
		knowledge of EVs, HEVs
		and solar vehicles
		CO1.Find out the gap
		between existing
		mechanical systems and
		develop new creative
	Project – I	new mechanical system.
	rioject – i	CO2.Learn about the
		literature review
		CO3.Get the experience
		to handle various tools,
		tackles and machines.

SEM-II Course Outcomes:

Year	Name of the Course (Subject)	Course Outcomes
		CO1. SOLVE higher order
		linear differential
		equations and its
		applications to model and
		analyze mass spring
		systems.
		CO2. APPLY Integral
		transform techniques such
		as Laplace transform and
		Fourier transform to solve
		differential equations
		involved in vibration
		theory, heat transfer and
		related mechanical
		engineering applications.
		CO3. APPLY Statistical
Second Year	Engineering Mathematics - III	methods like correlation,
		regression in analyzing and
		interpreting experimental
		data applicable to
		reliability engineering and
		probability theory in
		testing and quality control.
		CO4. PERFORM Vector
		differentiation &
		integration, analyze the
		vector fields and APPLY to
		fluid flow problems.
		CO5. SOLVE Partial
		differential equations such
		as wave equation, one and
		two dimensional heat flow
		equations.
	Kinematics of Machinery	CO1. APPLY kinematic

Г		
		analysis to simple
		mechanisms
		CO2. ANALYZE velocity and
		acceleration in
		mechanisms by vector and graphical method
		CO3. SYNTHESIZE a four
		bar mechanism with
		analytical and graphical
		methods
		CO4. APPLY fundamentals
		of gear theory as a
		prerequisite for gear
		design
		CO5. CONSTRUCT cam
		profile for given follower
		motion
		CO1. DETERMINE COP of
		refrigeration system and
		ANALYZE psychrometric
		processes.
		CO2. DISCUSS basics of
		engine terminology,air
		standard, fuel air and
		actual cycles.
		CO3. IDENTIFY factors
		affecting the combustion
		performance of SI and CI
		engines.
	Applied Thermodynamics	CO4. DETERMINE
		performance parameters
		of IC Engines and emission
		control.
		CO5. EXPLAIN working of
		various IC Engine systems
		and use of alternative
		fuels.
		CO6. CALCULATE
		performance of single and
		multi stage reciprocating
		compressors and DISCUSS
		rotary positive
		displacement compressors
		CO1. DETERMINE various properties of fluid
		CO2. APPLY the laws of
		fluid statics and concepts
		of buoyancy
		CO3. IDENTIFY types of
		fluid flow and terms
		associated in fluid
		kinematics
		CO4. APPLY principles of
	Fluid Mechanics	fluid dynamics to laminar
		flow
		CO5. ESTIMATE friction and
		CO5. ESTIMATE friction and
		CO5. ESTIMATE friction and minor losses in internal
		CO5. ESTIMATE friction and minor losses in internal flows and DETERMINE
		CO5. ESTIMATE friction and minor losses in internal flows and DETERMINE boundary layer formation
		CO5. ESTIMATE friction and minor losses in internal flows and DETERMINE boundary layer formation over an external surface
		CO5. ESTIMATE friction and minor losses in internal flows and DETERMINE boundary layer formation over an external surface CO6. CONSTRUCT

		parameters, also ABLE to
		predict the performance of
		prototype using model
		laws
		CO1. SELECT appropriate
		moulding, core making and
		melting practice and
		estimate pouring time,
		solidification rate and
		DESIGN riser size and
		location for sand casting
		process
		CO2. UNDERSTAND
		mechanism of metal
		forming techniques and
		CALCULATE load required
		for flat rolling
		CO3. DEMONSTRATE press
		working operations and
		APPLY the basic principles
	Manufacturing Processes	to DESIGN dies and tools
		for forming and shearing
		operations
		CO4. CLASSIFY and
		EXPLAIN different welding
		processes and EVALUATE
		welding characteristics
		CO5. DIFFERENTIATE
		thermoplastics and
		thermosetting and EXPLAIN
		polymer processing
		techniques
		CO6. UNDERSTAND the
		principle of manufacturing
		of fibre-reinforce
		composites and metal
		matrix composites
		CO1. PERFORM welding
		using TIG/ MIG/
		Resistance/Gas welding
		technique
		CO2. MAKE Fibre-
		reinforced Composites by
		hand lay-up process or
		spray lay-up techniques
		CO3. PERFORM
	Machine Shop	cylindrical/surface grinding
		operation and CALCULATE
		its machining time
		-
		CO4. DETERMINE number
		of indexing movements
		required and acquire skills
		to PRODUCE a spur gear on
		a horizontal milling
		machine
		CO5. PREPARE industry
		visit report
		CO6. UNDERSTAND
		procedure of plastic
		processing
		CO1. IDENTIFY the real-
	Project Based Learning - II	world problem (possibly of
		interdisciplinary nature)
	Project Based Learning - II	

		through a rise serve
		through a rigorous
		literature survey and
		formulate / set relevant
		aims and objectives.
		CO2. ANALYZE the results
		and arrive at valid
		conclusions.
		CO3. PROPOSE a suitable
		solution based on the
		fundamentals of
		mechanical engineering by
		possibly integration of
		previously acquired
		knowledge.
		CO4. CONTRIBUTE to
		society through proposed
		solutions by strictly
		following professional
		ethics and safety
		measures.
		CO5. USE of technology in
		proposed work and
		demonstrate learning in
		oral and written form.
		CO6. DEVELOP ability to
		work as an individual and
		as a team member.
		CO1. Use appropriate
		Numerical Methods to
		solve complex
		mechanical engineering
		problems.
		CO2. Formulate
		algorithms and
		programming.
	Numerical Methods and Optimization	CO3. Use Mathematical
		Solver.
		CO4. Generate Solutions
		for real life problem
		using optimization
		techniques.
		CO5. Analyze the
		research problem
Third Year		CO 1: To understand and
		apply principles of gear
		design to spur gears and
		industrial spur gears and
		boxes.
		CO 2 : To become
		proficient in Design of
		Helical and Bevel Gear
		CO 3: To develop
	Design of Machine Elements – II	capability to analyse
		Rolling contact bearing
		and its selection from
		manufacturer's
		Catalogue.
		CO 4: To learn a skill to
		design worm gear box
		for various industrial
		applications.

	CO 5: To inculcate an
	ability to design belt
	drives and selection of
	belt, rope and chain
	drives.
	CO 6: To achieve an
	expertise in design of
	Sliding contact bearing
	in industrial
	applications.
	CO1.Illustrate the
	fundamental principles
	and applications of
	refrigeration and air
	conditioning system
	CO2.Obtain cooling
	capacity and coefficient
	of performance by
	conducting test on
	vapour compression
	refrigeration systems
Refrigeration and Air Conditioning	CO3.Present the
	properties, applications
	and environmental
	issues of different
	refrigerants
	CO4.Calculate cooling
	load for air conditioning
	systems used for various
	CO5.Operate and
	analyze the refrigeration
	and air conditioning
	systems.
	CO1 Identification of how
	CO1.Identification of key
	elements of
	mechatronics system
	and its representation in
	terms of block diagram
	CO2.Understanding the
	concept of signal
	processing and use of
	interfacing systems such
	as ADC, DAC, digital I/O
	CO3.Interfacing of
	Sensors, Actuators using
Mechatronics	appropriate DAQ micro-
	controller
	CO4.Time and
	Frequency domain
	analysis of system model
	(for control application)
	CO5.PID control
	implementation on real
	time systems
	CO6.Development of
	PLC ladder programming
	and implementation of
	real life system.
	· ·
MANUFATCURING PROCESS – II	CO1.Student should be able to apply the

		knowledge of various manufacturing processes. CO2.Student should be able to identify various process parameters and their effect on processes. CO3.Student should be able to figure out application of modern machining. CO4.Students should get the knowledge of Jigs and Fixtures for variety of operations.
	MACHINE SHOP – II	CO1. Ability to develop knowledge about the working and programming techniques for various machines and tools
	SEMINAR	CO1. Establish motivation for any topic of interest and develop a thought process for technical presentation. CO2. Organize a detailed literature survey and build a document with respect to technical publications. CO3. Analysis and comprehension of proof-of-concept and related data. CO4. Effective presentation and improve soft skills. CO5. Make use of new and recent technology (e.g. Latex) for creating technical reports
	Audit Course II	CO1.Appreciate the concept of Entrepreneurship CO2.Identify entrepreneurship opportunity. CO3.Develop winning business plans
Final Year	Energy Engineering	CO1. Describe the power generation scenario, the layout components of

	thermal power plant and
	analyze the improved
	Rankin cycle, Cogeneration
	cycle
	CO2. Analyze the steam
	condensers, recognize the
	an environmental impacts
	of thermal power plant and
	method to control the
	same
	CO3. Recognize the layout,
	component details of
	hydroelectric power plant
	and nuclear power plant
	CO4. Realize the details of
	diesel power plant, gas
	power plant and analyze
	gas turbine power cycle
	CO5. Emphasize the
	fundaments of non-
	conventional power plants
	CO6. Describe the different
	power plant electrical
	instruments and basic
	principles of economics of
	power generation.
	CO1. Understand the
	difference between
	component level design
	and system level design.
	CO2. Design various
	mechanical systems like
	pressure vessels, machine
	tool gear boxes, material
Mashaniad Custom Design	handling systems, etc. for
Mechanical System Design	the specifications
	stated/formulated.
	stated/formulated.
	CO3. Learn optimum
	CO3. Learn optimum
	CO3. Learn optimum design principles and apply
	CO3. Learn optimum design principles and apply it to mechanical
	CO3. Learn optimum design principles and apply it to mechanical components.
	CO3. Learn optimum design principles and apply it to mechanical components. CO4. Handle system level
	CO3. Learn optimum design principles and apply it to mechanical components. CO4. Handle system level projects from concept to
	CO3. Learn optimum design principles and apply it to mechanical components. CO4. Handle system level projects from concept to product.
	CO3. Learn optimum design principles and apply it to mechanical components. CO4. Handle system level projects from concept to product. CO1.Apply the Industrial
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering concept
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyze
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement different
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved in
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Develop
Elective – III	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of work
Elective – III Industrial Engineering	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and Apply
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,financial management
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,financial managementpractices.
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,financial management
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,financial managementpractices.
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,financial managementpractices.CO5.Undertake project
	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,financial managementpractices.CO5.Undertake projectwork based on modeling &
Industrial Engineering	CO3. Learn optimumdesign principles and applyit to mechanicalcomponents.CO4. Handle system levelprojects from concept toproduct.CO1.Apply the IndustrialEngineering conceptCO2.Understand, analyzeand implement differentconcepts involved inmethod study.CO3.Design and Developdifferent aspects of worksystem and facilities.CO4.Understand and ApplyIndustrial safety standards,financial managementpractices.CO5.Undertake projectwork based on modeling &simulation area.

	applicability of advanced
	joining processes
	CO3.Understand and
	analyze the basic
	mechanisms of hybrid non-
	conventional machining
	techniques
	CO4.Select appropriate
	micro and nano fabrication
	techniques for engineering
	applications
	CO5.Understand and apply
	various additive
	manufacturing technology
	for product development
	CO6.Understand material
	characterization
	techniques to analyze
	effects of chemical
	composition, composition
	variation, crystal structure,
	etc.

iv) Name of the Department: Computer Engineering

Program Educational Objectives:

Objective 1: Graduates will provide solutions to challenging problems in their profession by applying Computer Engineering theory and principles, as well as fundamentals of science, computing, and mathematics with the consideration of cost, safety, environmental, social, and human factors.

Objective 2: Graduates will communicate effectively, work collaboratively and exhibit high levels of professionalism and ethical responsibility.

Objective 3: Apply their skills in clear communication, responsible teamwork, and time management by, for example, managing a team or project, working on multidisciplinary project teams, or communicating with external stakeholders.

Objective4:Demonstrate professional attitudes and ethics by, for example, assisting colleagues in professional development (e.g. mentoring), engaging in continuing education or training, participating in professional societies, engaging in service to the community, or contributing to an employer's efforts to comply with software licensing, protect privacy, or assure quality and safety.

Programs Outcomes:

PO1 - Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 - Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 - Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 - Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 - Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 - The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 - Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 - Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 - Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 - Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 - Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

On completion of the B.E.(Computer Science & Engineering) degree the graduates will be able to

- **PSO1**: Apply standard Software Engineering practices and strategies in real-time software project development using open-source programming environment or commercial environment to deliver quality product for the organization success
- **PSO2**: Design and develop computer programs/computer-based systems in the areas related to algorithms, networking, web design, cloud computing, IoT and data analytics of varying complexity
- **PSO3**: Acquaint with the contemporary trends in industrial/research settings and thereby innovate novel solutions to existing problems

Course Outcomes:

Year	Name of the Course (Subject)	Course Outcomes
	Data Structures & Algorithms	 CO1: To identify & articulate the complexity goals and benefits of a good hashing scheme for real-world applications. CO2: To apply non-linear data structures for solving problems of various domain. CO3: To design and specify the operations of a nonlinear-based abstract data type and implement them in a high-level programming language. CO4: To analyze the algorithmic solutions for resource requirements and optimization CO5: To use efficient indexing methods and multiway search techniques to store and maintain data. CO6: To use appropriate modern tools to understand and analyze the functionalities confined to the secondary storage.
Second Year(SEM 1)	Principals of Programming Languages(210255)	CO1: Make use of basic principles of programming languages. CO2: Develop a program with Data representation and Computations. CO3: Develop programs using Object Oriented Programming language Java. CO4: Develop application using inheritance, encapsulation, and polymorphism. CO5: Demonstrate Multithreading for robust application development. CO6: Develop a simple program using basic concepts of Functional and Logical programming paradigm
	Discrete Mathematics	Co1:Solve real world problems logically using appropriate set, function, and relation models and interpret the associated operations and terminologies in context. Co2: Analyze and synthesize the real world problems using discrete mathematics
	210244: Computer Graphics	CO1: Identify the basic terminologies of Computer Graphics and interpret the mathematical foundation of the concepts of computer graphics. CO2: Apply mathematics to develop Computer

		programs for elementary graphic operations. CO3: Illustrate the concepts of windowing and clipping and apply various algorithms to fill and clip polygons. CO4: Understand and apply the core concepts of computer graphics, including transformation in two and three dimensions, viewing and projection. CO5: Understand the concepts of color models, lighting, shading models and hidden surface elimination. CO6: Create effective programs using concepts of curves, fractals, animation and gaming
	210242: Digital Electronics & Logic Design	Co1:Realize and simplify Boolean Algebraic assignments for designing digital circuits using KMaps. Co2: Design and implement Sequential and Combinational digital circuits as per the specifications. Co3: Apply the knowledge to appropriate IC as per the design specifications. Co4:Design simple digital systems using VHDL. Co5:Develop simple embedded system for simple real world application
Second Year(SEM 2)	207003: Engineering Mathematics III	Co1:Solve higher order linear differential equationusing appropriate techniques for modeling andanalyzing electrical circuits.Co2: Solve problems related to Fourier transform, Z-Transform and applications to Signal and Imageprocessing.Co3:Apply statistical methods like correlation,regression analysis and probability theory for analysisand prediction of a given data as applied to machineintelligence.Co4:Perform vector differentiation and integration toanalyze the vector fields and apply to compute line,surface and volume integrals. Co5: Analyze conformalmappings, transformations and perform contourintegration of complex functions required in Imageprocessing, Digital filters and Computer graphics.
	Object Oriented Programming (210243)	 CO1: Apply constructs- sequence, selection and iteration; classes and objects, inheritance, use of predefined classes from libraries while developing software. CO2: Design object-oriented solutions for small systems involving multiple objects. CO3: Use virtual and pure virtual function and complex programming situations. CO4: Apply object-oriented software principles in problem solving. CO5: Analyze the strengths of object-oriented programming. CO6: Develop the application using object oriented programming language(C++).
	210253: Software Engineering	CO1: Analyze software requirements and formulate design solution for a software.

		 CO2: Design applicable solutions in one or more application domains using software engineering approaches that integrate ethical, social, legal and economic concerns. CO3: Apply new software models, techniques and technologies to bring out innovative and novelistic solutions for the growth of the society in all aspects and evolving into their continuous professional development. CO4: Model and design User interface and component-level. CO5: Identify and handle risk management and software configuration management. CO6: Utilize knowledge of software testing approaches, approaches to verification and validation. CO7: Construct software of high quality – software that is reliable, and that is reasonably easy to understand, modify and maintain efficient, reliable, robust and costeffective software solutions.
	210254: Microprocessor	 CO1: Exhibit skill of assembl ylanguage programming for the application. CO2: Classify Processor architectures. CO3: Illustrate advanced features of 80386 Microprocessor. CO4: Compare and contrast different processor modes. CO5: Use interrupts mechanism in applications CO6: Differentiate between Microprocessors and Microcontrollers. CO7: Identify and analyze the tools and techniques used to design, implement, and debug microprocessor-based systems.
	210252: Advanced Data Structures	Co1:To apply appropriate advanced data structure and efficient algorithms to approach the problems of various domain. Co2:To design the algorithms to solve the programming problems. Co3:To use effective and efficient data structures in solving various Computer Engineering domain problems. Co4: To analyze the algorithmic solutions for resource requirements and optimization Co5:To use appropriate modern tools to understand and analyze the functionalities confined to the data structure usage.
	Computer Networks (310245)	Co1:Analyze the requirements for a given organizational structure to select the most appropriate networking architecture, topologies, transmission mediums, and technologies

Γ	l .	
		Co2:Demonstrate design issues, flow control and
		error control
		Co3:Analyze data flow between TCP/IP model using
		Application, Transport and Network Layer Protocols.
		Co4:Illustrate applications of Computer Network
		capabilities, selection and usage for various sectors of
		user community.
		Co5: Illustrate Client-Server architectures and
Third Year (Sem 1)		prototypes by the means of correct standards and
		technology.
		Co6: Demonstrate different routing and switching
		algorithms
		Co1:Decide on a process model for a developing a
		software project
		Co2:Classify software applications and Identify unique
		features of various domains
	Software Engineering and Project	Co3: Design test cases of a software system.
	Management	Co4:Understand basics of IT Project management.
	Management	Co5:Plan, schedule and execute a project considering
		the risk management.
		Co6:Apply quality attributes in software development
		life cycle.
		Co1:Understand the need, usage and importance of
		an Information System to an organization.
		Co2: Understand the activities that are undertaken
		while managing, designing, planning, implementation,
		and deployment of computerized information system
		in an organization.
		Co3:Further the student would be aware of various
		Information System solutions like ERP, CRM, Data
		warehouses and the issues in successful
	Information Systems and	implementation of these technology solutions in any
	Engineering Economics	organizations
		Co4:Outline the past history, present position and
		expected performance of a company engaged in
		engineering practice or in the computer industry.
		Co5:Perform and evaluate present worth, future
		worth and annual worth analyses on one of more
		economic alternatives.
		Co6:Be able to carry out and evaluate benefit/cost,
		life cycle and breakeven analyses on one or more
		economic alternatives.

		Co1:Design E-R Model for given requirements and
		convert the same into database tables.
		Co2 Use database techniques such as SQL & PL/SQL.
		Co3: Use modern database techniques such as
	310242 : Database Management	NOSQL.
	Systems	Co4: Explain transaction Management in relational
	Systems	database System. Co5: Describe different database
		architecture and analyses the use of appropriate
		architecture in real time environment.
		Co6: Students will be able to use advanced database
		Programming concepts Big Data – HADOOP
		Co1:Analyze and synthesize system software
	310251: Systems Programming and	Co2:Use tools like LEX & YACC.
	Operating System	Co3: Implement operating system functions.
		Co1:Analyze the problem statement (SRS) and choose
		proper design technique for designing webbased/
		desktop application
		Co2:Design and analyze an application using UML
	310253: Software Modeling and	modeling as fundamental tool
	Design	Co3:Apply design patterns to understand reusability in
		OO design Co4:Decide and apply appropriate modern
		tool for designing and modeling
		Co5:Decide and apply appropriate modern testing
		tool for testing web-based/desktop application
Third Year (Sem 2)	310252: Embedded Systems and Internet of Things	CO1-Implement an architectural design for IoT for specified requirement CO2-Solve the given societal challenge using IoT Co3- Choose between available technologies and devices for stated IoT challenge
		Co1:analyze given assignment to select sustainable
		web development design methodology
		CO2: develop web based application using suitable
	310254: Web Technology	client side and server side web technologies
		Co3:develop solution to complex problems using
		appropriate method, technologies, frameworks, web
		services and content management
		CO1:Formulate the problem Analyze the asymptotic
		performance of algorithms
		CO2: Decide and apply algorithmic strategies to solve
	Design and Analysis of	given problem
	Algorithm(310250)	CO3: Find optimal solution by applying various
		methods
		CO4: Find optimal solution by applying various
		methods
Final Year(SEM 1)	HPC(SEM-I)	CO1:Describe different parallel architectures, inter-
		connect networks, programming models.

		CO2:Develop an efficient parallel algorithm to solve given problem. CO3:Analyze and measure performance of modern parallel computing systems. CO4:Build the logic to parallelize the programming task.
	STQA(SEM-I-EL-II)	CO1:Describe fundamental concepts in software testing such as manual testing, automationtesting and software quality assurance. CO2:Design and develop project test plan, design test cases, test data, and conduct test operations CO3:Apply recent automation tool for various software testing for testing software CO4:Apply different approaches of quality management, assurance, and quality standard to software system CO5:Apply and analyze effectiveness Software Quality Tools
	410242 Artificial Intelligence and Robotics	 CO1- Identify and apply suitable Intelligent agents for various AI applications CO2- Design smart system using different informed search / uninformed search or heuristic approaches. CO3- Identify knowledge associated and represent it by ontological engineering to plan a strategy to solve given problem. CO3- Apply the suitable algorithms to solve AI problems
	Data Analytics	CO1:Write case studies in Business Analytic and Intelligence using mathematical models CO2- Present a survey on applications for Business Analytic and Intelligence CO3-Provide problem solutions for multi-core or distributed, concurrent/Parallel environments
	410244(B): Software Architecture and Design	Co1: Express the analysis and design of an application Co2:Specify functional semantics of an application Co3: Evaluate software architectures Co4:Select and use appropriate architectural styles and software design patterns
	Project Work I	 CO1: Solve real life problems by applying knowledge. CO2:Analyze alternative approaches, apply and use most appropriate one for feasible solution. CO3: Write precise reports and technical documents in a nutshell. CO4: Participate effectively in multi-disciplinary and heterogeneous teams exhibiting team work, CO5: Inter-personal relationships, conflict management and leadership quality
Final Year(SEM 2)	ML(SEM-II)	CO1:Distinguish different learning based applications

	CO2:Apply different preprocessing methods to
	prepare training data set for machine learning.
	CO3:Design and implement supervised and
	unsupervised machine learning algorithm.
	CO4:Implement different learning models
	CO5:Learn Meta classifiers and deep learning
	concepts
	Co1:Gauge the security protections and limitations
	provided by today's technology.
	Co2:Identify information security and cyber security
410251: Information and Cyber	threats.
Security	Co3:Analyze threats in order to protect or defend it in
	cyberspace from cyber-attacks.
	Co4: Build appropriate security solutions against
	cyber-attacks.
	Co1: Design and implement a lexical analyzer and a
	syntax analyzer Co2:Specify appropriate translations
	to generate intermediate code for the given
410252(B): Compilers	programming language construct
	Co3:Compare and contrast different storage
	management schemes Co4:Identify sources for code optimization
Elective IV 410253(C): Cloud	CO1:To install cloud computing environments.
Computing	CO2:To develop any one type of cloud
	CO1:Show evidence of independent investigation
	CO2: Critically analyze the results and their
	interpretation.
	CO3: Report and present the original results in an
	orderly way and placing the open questions in the
Project Work II	right perspective.
	Co4: Link techniques and results from literature as
	well as actual research and future research lines with
	the research.
	CO5: Appreciate practical implications and constraints
	of the specialist subject